metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(*E*)-But-2-enoato- κ O]chlorido(2,2'diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^3, N^{3'}$)zinc(II) monohydrate

Mei Du,^a Yan-Li Wang,^a Bing-Xin Liu^a and Duan-Jun Xu^b*

^aDepartment of Chemistry, Shanghai University, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: xudj@mail.hz.zj.cn

Received 23 March 2010; accepted 24 March 2010

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.080; data-to-parameter ratio = 14.3.

In the title compound, $[Zn(C_4H_5O_2)Cl(C_6H_6N_4S_2)]\cdot H_2O$, the Zn^{II} cation is coordinated by a bidentate diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl⁻ anion in a distorted tetrahedral geometry. Within the DABT ligand, the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°. An intramolecular N-H···O interaction occurs. The centroid–centroid distance of 3.6650 (17) Å and partially overlapped arrangement between nearly parallel thiazole rings of adjacent complexes indicate the existence of π - π stacking in the crystal structure. Extensive O-H···Cl, O-H···Cl, N-H···Cl and N-H···O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For the potential applications of metal complexes of diaminobithiazole in the biological field, see: Waring (1981); Fisher *et al.* (1985). For dihedral angles between thiazole rings in diaminobithiazole complexes, see: Du *et al.* (2010); Zhang *et al.* (2006).

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_4\text{H}_5\text{O}_2)\text{Cl}(\text{C}_6\text{H}_6\text{N}_4\text{S}_2)]\cdot\text{H}_2\text{O} \\ & M_r = 402.18 \\ & \text{Monoclinic, } P_{2_1/n} \\ & a = 7.2782 \ (13) \text{ \AA} \end{split}$$

b = 16.2846 (16) Å c = 13.237 (2) Å $\beta = 99.252 (16)^{\circ}$ $V = 1548.5 (4) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 2.04 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.75, \ T_{\max} = 0.88$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 191 parameters $wR(F^2) = 0.080$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.71$ e Å $^{-3}$ 2735 reflections $\Delta \rho_{min} = -0.45$ e Å $^{-3}$

T = 294 K

 $R_{\rm int} = 0.026$

 $0.36 \times 0.30 \times 0.24 \text{ mm}$

7862 measured reflections 2735 independent reflections

2293 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

	8		
Zn-O1	1.961 (2)	Zn-N3	2.060 (2)
Zn-N1	2.029 (2)	Zn-Cl1	2.2223 (9)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdots Cl1^i$	0.86	2.56	3.345 (3)	152
$O1W-H1B\cdots O1$	0.86	2.04	2.859 (4)	160
$N2-H2A\cdots O2$	0.86	2.22	2.959 (4)	144
$N2-H2B\cdots O1W^{ii}$	0.86	2.23	3.032 (4)	154
$N4-H4A\cdotsO1W$	0.86	2.30	3.043 (4)	145
N4–H4 B ···Cl1 ⁱⁱⁱ	0.86	2.66	3.393 (3)	144

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2750).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Du, M., Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m343–m344. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.

Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944– m1945.

supplementary materials

Acta Cryst. (2010). E66, m466 [doi:10.1107/S160053681001113X]

[(E)-But-2-enoato- κO]chlorido(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^3$, N^3')zinc(II) monohydrate

M. Du, Y.-L. Wang, B.-X. Liu and D.-J. Xu

Comment

Some metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown the potential application in the biological field (Waring, 1981; Fisher *et al.*, 1985). As a part of serial structural investigation of metal complexes with DABT, the title Zn^{II} complex was prepared in the laboratory and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The Zn^{II} cation is coordinated by a diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl⁻ anion in a distorted tetrahedral geometry (Table 1). Within the DABT ligand the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°, which agrees with 9.51 (17)° found in a Pb^{II} complex of DABT (Du *et al.*, 2010) and 9.5 (2)° found in a Cd^{II} complex of DABT (Zhang *et al.*, 2006). The partially overlapped arrangement of centroids distance of 3.6650 (17) Å between nearly parallel thiazole rings of the adjacent complexes indicate the existence of π - π stacking in the crystal structure (Fig. 2). The extensive hydrogen bonding help to stabilize the crystal structure (Table 2).

Experimental

A water-ethanol solution (20 ml, 1:1) of DABT (0.10 g, 0.5 mmol) and $ZnCl_2$ (0.07 g, 0.5 mmol) was refluxed for 10 min, then an aqueous solution (20 ml) of (E)-but-2-enoatic acid (0.09 g, 1 mmol) and NaOH (0.04 g, 1 mmol) was mixed with the above solution. The mixture was refluxed for 6 h and then filtered. The single crystals of the title compound were obtained from the filtrate after a week.

Refinement

H atoms of water molecule were located in a difference Fourier map and were refined as riding in as-found relative positions with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were placed in calculated positions with C—H = 0.96 Å (methyl), 0.93 Å (aromatic) and N—H = 0.86 Å, and refined in the riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C,N)$ for the others.

Figures

Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding.

Fig. 2. The partially overlapped arrangement between thiazole rings showing π - π stacking [symmetry code: (i) 1-x, -y, 1-z].

[(*E*)-But-2-enoato- κO]chlorido(2,2'-diamino-4,4'-bi-1,3- thiazole- $\kappa^2 N^3$, N^3 ')zinc(II) monohydrate

F(000) = 816 $D_{\rm x} = 1.725 \text{ Mg m}^{-3}$

 $\theta = 2.0-24.6^{\circ}$ $\mu = 2.04 \text{ mm}^{-1}$ T = 294 KBlock, yellow

 $0.36 \times 0.30 \times 0.24 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3446 reflections

Crystal data

$[Zn(C_4H_5O_2)Cl(C_6H_6N_4S_2)]\cdot H_2O$
$M_r = 402.18$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 7.2782 (13) Å
b = 16.2846 (16) Å
c = 13.237 (2) Å
$\beta = 99.252 \ (16)^{\circ}$
$V = 1548.5 (4) \text{ Å}^3$
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer	2735 independent reflections
Radiation source: fine-focus sealed tube	2293 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.75, T_{\max} = 0.88$	$k = -12 \rightarrow 19$
7862 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.080$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0353P)^2 + 1.093P]$ where $P = (F_0^2 + 2F_c^2)/3$
2735 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
191 parameters	$\Delta \rho_{max} = 0.71 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Zn 0.03260 (13) 0.77894 (5) 0.12724 (2) 0.64617(2) Cl1 1.01129 (13) 0.21725 (6) 0.67179(7) 0.0541 (3) **S**1 0.93933 (12) -0.14538(5)0.65212(7) 0.0433(2)S2 0.56191 (12) 0.09881 (5) 0.30033 (6) 0.0418(2)N1 0.8456 (3) 0.00649 (15) 0.64140 (17) 0.0314 (6) N2 0.9835(4)-0.03495(18)0.8057(2)0.0483(7)H2A 0.9737 0.8305 0.058* 0.0134 H2B 1.0326 -0.07400.84470.058* N3 0.6716(3)0.10813 (15) 0.49432 (17) 0.0299(5)N4 0.5365 (4) 0.22969 (16) 0.4215 (2) 0.0444(7)H4A 0.5508 0.2545 0.4796 0.053* H4B 0.4859 0.2549 0.3670 0.053* 01 0.5737 (3) 0.15367 (14) 0.72007 (17) 0.0471 (6) 02 0.7729 (4) 0.11162 (17) 0.8535(2) 0.0630(7) O1W 0.4071 (4) 0.29467 (17) 0.6138 (2) 0.0726 (8) H1A 0.2909 0.2835 0.6079 0.087* H1B 0.2592 0.087* 0.4522 0.6587 C1 0.9224 (4) -0.04933(19)0.7066 (2) 0.0351 (7) C2 0.8373 (4) -0.10659 (19) 0.5354 (2) 0.0396 (8) H2 0.047* 0.8137 -0.13680.4751 C3 0.7965 (4) -0.02684(18)0.5437 (2) 0.0316(7) C4 0.7091 (4) 0.02855 (18) 0.4637 (2) 0.0309(7) C5 0.6607 (4) 0.0136(2) 0.3637 (2) 0.0386(7) Н5 0.3325 0.046* 0.6782 -0.0363C6 0.5924 (4) 0.15275 (19) 0.4159 (2) 0.0333 (7) C7 0.1325 (2) 0.0448 (8) 0.6148 (5) 0.8138 (3) C8 0.4511 (6) 0.1316(2) 0.8698 (3) 0.0541 (9) H8 0.3377 0.1509 0.065* 0.8357 C9 0.4583 (6) 0.1061 (2) 0.9613 (3) 0.0623 (11) H9 0.5745 0.0909 0.9963 0.075* C10 0.2972 (7) 0.0984 (3) 1.0172 (3) 0.0724 (13) H10A 0.109* 0.3061 0.1397 1.0696 0.109* H10B 0.2981 0.0450 1.0479

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10C	0.1834	0.1057	0.9702	0.10)9*	
Atomic disp	placement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0384 (2)	0.0298 (2)	0.0298 (2)	-0.00060 (15)	0.00584 (14)	-0.00417 (15)
Cl1	0.0597 (6)	0.0545 (6)	0.0507 (5)	-0.0236 (4)	0.0161 (4)	-0.0186 (4)
S1	0.0460 (5)	0.0295 (4)	0.0551 (5)	0.0035 (4)	0.0103 (4)	0.0042 (4)
S2	0.0460 (5)	0.0489 (5)	0.0286 (4)	-0.0057 (4)	0.0004 (3)	-0.0015 (4)
N1	0.0353 (14)	0.0292 (13)	0.0305 (13)	-0.0011 (11)	0.0076 (10)	0.0008 (11)
N2	0.0629 (19)	0.0439 (17)	0.0357 (15)	0.0110 (14)	0.0010 (13)	0.0064 (13)
N3	0.0316 (13)	0.0310 (13)	0.0279 (12)	-0.0041 (11)	0.0069 (10)	-0.0008 (10)
N4	0.0572 (18)	0.0363 (16)	0.0371 (15)	0.0029 (13)	0.0001 (13)	0.0059 (12)
01	0.0528 (15)	0.0469 (14)	0.0449 (14)	0.0028 (11)	0.0173 (11)	-0.0083 (11)
02	0.0653 (19)	0.0609 (17)	0.0627 (17)	0.0061 (14)	0.0103 (14)	-0.0015 (14)
O1W	0.0642 (18)	0.072 (2)	0.084 (2)	-0.0139 (15)	0.0188 (15)	-0.0228 (16)
C1	0.0323 (17)	0.0348 (17)	0.0397 (18)	-0.0008 (14)	0.0100 (13)	0.0035 (14)
C2	0.046 (2)	0.0319 (18)	0.0428 (18)	-0.0028 (14)	0.0115 (15)	-0.0064 (14)
C3	0.0298 (16)	0.0315 (17)	0.0353 (16)	-0.0052 (13)	0.0110 (12)	-0.0043 (13)
C4	0.0310 (16)	0.0304 (16)	0.0329 (16)	-0.0055 (13)	0.0098 (12)	-0.0025 (13)
C5	0.0449 (19)	0.0372 (18)	0.0343 (17)	-0.0060 (15)	0.0081 (14)	-0.0069 (14)
C6	0.0337 (17)	0.0347 (17)	0.0309 (16)	-0.0053 (13)	0.0038 (13)	0.0006 (13)
C7	0.056 (2)	0.0315 (18)	0.050 (2)	-0.0028 (16)	0.0166 (17)	-0.0093 (16)
C8	0.062 (2)	0.051 (2)	0.051 (2)	0.0083 (18)	0.0151 (18)	-0.0034 (18)
C9	0.079 (3)	0.050 (2)	0.062 (3)	0.014 (2)	0.022 (2)	0.002 (2)
C10	0.097 (3)	0.063 (3)	0.069 (3)	0.017 (2)	0.048 (3)	0.011 (2)

Geometric parameters (Å, °)

Zn—O1	1.961 (2)	O1—C7	1.275 (4)
Zn—N1	2.029 (2)	O2—C7	1.234 (4)
Zn—N3	2.060 (2)	O1W—H1A	0.8564
Zn—Cl1	2.2223 (9)	O1W—H1B	0.8550
S1—C2	1.723 (3)	C2—C3	1.340 (4)
S1—C1	1.735 (3)	С2—Н2	0.9300
S2—C5	1.718 (3)	C3—C4	1.457 (4)
S2—C6	1.747 (3)	C4—C5	1.336 (4)
N1—C1	1.315 (4)	С5—Н5	0.9300
N1—C3	1.395 (4)	С7—С8	1.502 (5)
N2—C1	1.336 (4)	C8—C9	1.273 (5)
N2—H2A	0.8600	С8—Н8	0.9300
N2—H2B	0.8600	C9—C10	1.490 (5)
N3—C6	1.321 (4)	С9—Н9	0.9300
N3—C4	1.398 (4)	C10—H10A	0.9600
N4—C6	1.323 (4)	C10—H10B	0.9600
N4—H4A	0.8600	C10—H10C	0.9600
N4—H4B	0.8600		
O1—Zn—N1	115.69 (10)	C2—C3—N1	115.2 (3)

O1—Zn—N3	108.68 (10)	C2—C3—C4	128.1 (3)
N1—Zn—N3	83.01 (9)	N1—C3—C4	116.7 (2)
O1—Zn—Cl1	113.65 (7)	C5-C4-N3	115.0 (3)
N1—Zn—Cl1	117.66 (7)	C5—C4—C3	128.5 (3)
N3—Zn—Cl1	114.11 (7)	N3—C4—C3	116.5 (2)
C2—S1—C1	89.60 (15)	C4—C5—S2	111.1 (2)
C5—S2—C6	89.66 (15)	C4—C5—H5	124.5
C1—N1—C3	111.0 (2)	S2—C5—H5	124.5
C1—N1—Zn	136.7 (2)	N3—C6—N4	125.2 (3)
C3—N1—Zn	112.28 (18)	N3—C6—S2	112.9 (2)
C1—N2—H2A	120.0	N4—C6—S2	121.9 (2)
C1—N2—H2B	120.0	O2—C7—O1	123.1 (3)
H2A—N2—H2B	120.0	O2—C7—C8	123.1 (3)
C6—N3—C4	111.3 (2)	O1—C7—C8	113.7 (3)
C6—N3—Zn	137.1 (2)	C9—C8—C7	124.0 (4)
C4—N3—Zn	111.23 (18)	С9—С8—Н8	118.0
C6—N4—H4A	120.0	С7—С8—Н8	118.0
C6—N4—H4B	120.0	C8—C9—C10	125.8 (4)
H4A—N4—H4B	120.0	С8—С9—Н9	117.1
C7—O1—Zn	110.3 (2)	С10—С9—Н9	117.1
H1A—O1W—H1B	100.6	C9-C10-H10A	109.5
N1-C1-N2	124.2 (3)	C9-C10-H10B	109.5
N1-C1-S1	113.6 (2)	H10A—C10—H10B	109.5
N2-C1-S1	122.1 (2)	C9—C10—H10C	109.5
C3—C2—S1	110.6 (2)	H10A—C10—H10C	109.5
С3—С2—Н2	124.7	H10B—C10—H10C	109.5
S1—C2—H2	124.7		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1W—H1A…Cl1 ⁱ	0.86	2.56	3.345 (3)	152
O1W—H1B…O1	0.86	2.04	2.859 (4)	160
N2—H2A···O2	0.86	2.22	2.959 (4)	144
N2—H2B···O1W ⁱⁱ	0.86	2.23	3.032 (4)	154
N4—H4A…O1W	0.86	2.30	3.043 (4)	145
N4—H4B…Cl1 ⁱⁱⁱ	0.86	2.66	3.393 (3)	144

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iii) *x*-1/2, -*y*+1/2, *z*-1/2.

Fig. 1

Fig. 2